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Faculty of Geodesy, University of Zagreb

Young Scholars in the Analytic Theory of Numbers and
Automorphic Forms

Mathematical Institute, University of Bonn

28 March 2022

IP-2018-01-3628
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Examples of Poincaré series on H = C=(τ)>0

For k ∈ 4 + 2Z≥0 and n ∈ Z>0, writing j

((
a b
c d

)
, τ

)
= cτ + d :

the classical holomorphic Eisenstein series Ek ∈ Mk(SL2(Z)),

Ek(τ) :=
∑

γ∈SL2(Z)∞\SL2(Z)

j(γ, τ)−k , τ ∈ H,

 does not vanish at the cusps, so does not vanish identically

the classical Poincaré series ψn,k ∈ Sk(SL2(Z)),

ψn,k(τ) :=
∑

γ∈SL2(Z)∞\SL2(Z)

e2πinγ.τ j(γ, τ)−k , τ ∈ H

 ?
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Which ψn,k are identically zero?

For k ∈ 4 + 2Z≥0 and n ∈ Z>0, ψn,k ∈ Sk(SL2(Z)) is defined by

ψn,k(τ) :=
∑

γ∈SL2(Z)∞\SL2(Z)

e2πinγ.τ j(γ, τ)−k , τ ∈ H.

dk := dimC Sk(SL2(Z)) = 0 for k ∈ {4, 6, 8, 10, 14}.
{ψ1,k . . . , ψdk ,k} is a basis of Sk(SL2(Z)).

Ideas for n > dk :

Rankin (1980)
estimating the nth Fourier

coefficient of ψn,k

n ≤ k2− C
log log k

for k >> 0

Rhoades (2011)

reformulation in terms of
existence of weakly modular
forms with a given principal

part of Fourier expansion

n ≤ 1
12 (k − 2)

Muić (2011) integral non-vanishing criterion n ≤ 1
4π

(
k − 8

3

)
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Poincaré series

Let:

G be a locally compact Hausdorff group, second-countable
and unimodular, with Haar measure dg

Λ ⊆ Γ be discrete subgroups of G

χ : Γ→ C× be a unitary character

ϕ : G → C be a measurable function such that:

(F1) ϕ(λg) = χ(λ)ϕ(g), λ ∈ Λ, g ∈ G .
(F2) |ϕ| ∈ L1(Λ\G ).

Lemma

The Poincaré series(
PΛ\Γ,χϕ

)
(g) :=

∑
γ∈Λ\Γ

χ(γ)ϕ(γg)

converges absolutely almost everywhere on G, and∣∣PΛ\Γ,χϕ
∣∣ ∈ L1(Γ\G ).
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Theorem 1 (Muić 2009; Ž. 2018)

We have ∫
Γ\G

∣∣(PΛ\Γ,χϕ
)

(g)
∣∣ dg > 0

if there exists a Borel-measurable set C ⊆ G such that:

(C1) CC−1 ∩ Γ ⊆ Λ.

(C2) We have ∫
Λ\ΛC

|||ϕ(g)||| dg > 1

2

∫
Λ\G
|||ϕ(g)||| dg

for some measurable function ||| · ||| : C→ R≥0 such that:

(B1) |||0||| = 0.

(B2) |||z ||| = ||| |z | |||, z ∈ C.

(B3) |||
∑∞

n=1 zn ||| ≤
∑∞

n=1 |||zn ||| for every (zn)n∈Z>0 ⊆ C such
that

∑∞
n=1 |zn| <∞.
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Applications (Muić; Ž.)

A Cuspidal automorphic forms on (the metaplectic cover of)
SL2(R) and cusp forms of (half-)integral weight:

I Classical Poincaré series ψΓ,n,k,χ ∈ Sk(Γ, χ)

II π being an integrable discrete series of (the metaplectic
cover of) SL2(R), Poincaré series of K -finite matrix
coefficients of π that transform on both sides as
characters of K

III Cusp forms fs ∈ Sk(Γ, χ) such that

L(s, f ) = 〈f , fs〉Sk (Γ,χ) , f ∈ Sk(Γ, χ).

B Cuspidal vector-valued modular forms:

I Classical and elliptic vector-valued Poincaré series.
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Application A

Non-vanishing criterion for Poincaré
series on the metaplectic cover of

SL2(R)

 

Non-vanishing criterion for Poincaré
series of half-integral weight on H
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The metaplectic cover of SL2(R)

Writing H := C=(z)>0,

SL2(R)∼:=

{
σ =

(
gσ =

(
aσ bσ
cσ dσ

)
, ησ

)
∈ SL2(R)× CH :

ησ is holomorphic and η2
σ(z) = cσz + dσ for all z ∈ H

}
.

Multiplication rule:

σ1σ2 := (gσ1gσ2 , ησ1(gσ2 .z)ησ2(z)) , σ1, σ2 ∈ SL2(R)∼.

Left action on H:

σ.z :=
aσz + bσ
cσz + dσ

.

For every k ∈ 1
2 + Z≥0, right action on CH:(

f
∣∣
k
σ
)

(z) := f (σ.z) ησ(z)−2k , z ∈ H.
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The metaplectic cover of SL2(R)

A smooth covering homomorphism of degree 2:

P : SL2(R)∼ → SL2(R), P(σ) := gσ.

Using shorthand notation (gσ, ησ(i)) for σ = (gσ, ησ) ∈ SL2(R)∼, we have
the Iwasawa parametrization R× R>0 × R→ SL2(R)∼,

(x , y , t) 7→
((

1 x
1

)
, 1

)
︸ ︷︷ ︸

=: nx ∈ N

((
y

1
2

y−
1
2

)
, y−

1
4

)
︸ ︷︷ ︸

=: ay ∈ A

((
cos t − sin t
sin t cos t

)
, e i

t
2

)
︸ ︷︷ ︸

=: κt ∈ K

.

Haar measure on SL2(R)∼: for ϕ ∈ Cc (SL2(R)∼),∫
SL2(R)∼

ϕ(g) dg :=
1

4π

∫ 4π

0

∫
H
ϕ(nxayκt) dv(x + iy) dt,

where dv(x + iy) := dx dy
y2 for x ∈ R and y ∈ R>0.

K is a maximal compact subgroup; K̂ =
{
χk(κt) := e−ikt : k ∈ 1

2Z
}

.
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Spaces Sk(Γ, χ) of cusp forms of half-integral weight

From now on, let:

Γ be a discrete subgroup of finite covolume in SL2(R)∼

χ : Γ→ C× be a character of finite order

k ∈ 1
2 + Z≥0.

A cusp form f ∈ Sk(Γ, χ) is a holomorphic function f : H → C
such that:

f
∣∣
k
γ = χ(γ)f for all γ ∈ Γ

f vanishes at all cusps of P(Γ) := {gγ : γ ∈ Γ}.

Petersson inner product on Sk(Γ, χ):

〈f1, f2〉Sk (Γ,χ) :=
1

εΓ

∫
Γ\H

f1(z)f2(z)=(z)k dv(z),

where εΓ := |Γ ∩ Z (SL2(R)∼)|.
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The classical lift CH → CSL2(R)∼

... is defined by

f : H → C 7→ Ff : SL2(R)∼ → C,
Ff (σ) :=

(
f
∣∣
k
σ
)

(i) ,

restricts to an isometry

Sk(Γ, 1)→ Acusp (Γ\SL2(R)∼) ⊆ L2 (Γ\SL2(R)∼) ,

and maps

PΛ\Γ,χf :=
∑
γ∈Λ\Γ

χ(γ) f
∣∣
k
γ 7→ PΛ\Γ,χFf =

∑
γ∈Λ\Γ

χ(γ)Ff (γ · ).
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Non-vanishing criterion for Poincaré series on H
Let f : H → C be a measurable function such that:

f
∣∣
k
λ = χ(λ)f , λ ∈ Λ

∫
Λ\H

∣∣∣f (z)=(z)
k
2

∣∣∣ dv(z) <∞.

Then, ∫
Γ\H

∣∣∣(PΛ\Γ,χf
)

(z)=(z)
k
2

∣∣∣ dv(z) <∞.

Theorem 2

(1) If χ
∣∣
Γ∩Z(SL2(R)∼)

6= χk

∣∣
Γ∩Z(SL2(R)∼)

, then PΛ\Γ,χf ≡ 0.

(2) If χ
∣∣
Γ∩Z(SL2(R)∼)

= χk

∣∣
Γ∩Z(SL2(R)∼)

, then PΛ\Γ,χf 6≡ 0 if there exists a

Borel-measurable set S ⊆ H such that:

(1) ∀z1, z2 ∈ S z1 6= z2 ⇒ Γ.z1 6= Γ.z2.

(2)

∫
Λ\Λ.S

∣∣∣∣∣∣∣∣∣ f (z)=(z)
k
2

∣∣∣∣∣∣∣∣∣ dv(z) >
1

2

∫
Λ\H

∣∣∣∣∣∣∣∣∣ f (z)=(z)
k
2

∣∣∣∣∣∣∣∣∣ dv(z) for some

measurable function ||| · ||| : C→ R≥0 satisfying (B1) – (B3).
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Application A.III

L-functions of cusp forms of
half-integral weight

Sonja Žunar Non-vanishing of Poincaré series 14/24



L-functions of cusp forms of half-integral weight

Let:

k ∈ 1
2 + Z≥0

Γ be a discrete subgroup of finite covolume in SL2(R)∼ such
that ∞ is a cusp of P(Γ)

χ : Γ→ C× be a character of finite order such that

χ(γ) = η−2k
γ , γ ∈ Γ∞,

h ∈ R>0 such that Z (SL2(R)∼) Γ∞ = Z (SL2(R)∼) 〈nh〉.

The L-function of a cusp form f (z) =
∑∞

n=1 an(f )e2πin z
h in

Sk(Γ, χ) is the function L( · , f ) : C<(s)> k
2

+1 → C,

L(s, f ) :=
∞∑
n=1

an(f )

ns
.
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Theorem 3 (Analytic continuation of L-functions)

Suppose k ∈ 9
2 + Z≥0. Let f ∈ Sk(Γ, χ). Then, for <(s) < k

2 the
series

ΨΓ,k,χ,s := PΓ∞\Γ,χ

( ∞∑
n=1

ns−1e2πin ·
h

)
converges absolutely and uniformly on compact sets in H and
defines an element of Sk(Γ, χ), and the formula

L(s, f ) =
εΓ(4π)k−1

hkΓ(k − 1)
〈f , ΨΓ,k,χ,k−s〉Sk (Γ,χ)

defines a holomorphic continuation of L( · , f ) to the half-plane
C<(s)> k

2
.
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Theorem 4 (Non-vanishing of L-functions)

Suppose that k ∈ 9
2 + Z≥0. Let k

2 < <(s) < k − 1. Let us denote

N := inf

{
|c | 6= 0 :

(
a b
c d

)
∈ P(Γ)

}
> 0.

If
Nh

π
is greater than or equal to

max

 4

k − 8
3

,

e
π
2
|=(s)|Γ

(
k−<(s)+1

2

)
Γ
(
k−<(s)−1

2

)
2

k
2
−1

πΓ
(
k
2 − 1

) (
<(s)− k

2

)


1

<(s)− k
2

 ,

then
L (s,ΨΓ,k,χ,k−s) > 0.

Proof.

Put S := ]0, h]×
]

1
N ,∞

[
and ||| · ||| := | · | in Theorem 2.
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Corollary

Let η, ε, ν ∈ R>0 such that

1

2
< ε < ν.

For k ∈ 1
2 + Z≥0 we define

Ck :=

[
k

2
+ ε,

k

2
+ ν

]
× [−η, η] ⊆ C.

=(z)

<(z)k
2

k+1
2

ε

ν

Ck

η

−η

There exists k0 ∈ 9
2 + Z≥0 such that for every choice of

k ∈ k0 + Z≥0

s ∈ Ck

a discrete subgroup Γ of finite covolume in SL2(R)∼ such that ∞ is
a cusp of P(Γ)

a character χ : Γ→ C× of finite order satisfying χ(γ) = η−2k
γ for all

γ ∈ Γ∞

we have L (s,ΨΓ,k,χ,k−s) > 0.
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Application B

A non-vanishing criterion for
vector-valued Poincaré series

on H
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Basics

SL2(R) acts on H by Möbius transformations:

g .τ =
aτ + b

cτ + d
, g =

(
a b
c d

)
∈ SL2(R), τ ∈ H.

Let:

v be the standard SL2(R)-invariant Radon measure on H:

dv(x + iy) =
dx dy

y2

v : SL2(Z)→ C|z|=1 be a multiplier system of weight k ∈ R.
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Poincaré series on H
Let:

Λ ⊆ Γ be subgroups of SL2(Z) such that |SL2(Z) : Γ| <∞
ρ : Γ→ GLn(C) be a unitary representation.

Γ acts on the right on (Cn)H:(
f
∣∣
k,ρ
γ
)

(τ) = v(γ)−1j(γ, τ)−kρ(γ)−1f (γ.τ), τ ∈ H.

For every measurable function f : H → Cn such that

f
∣∣
k,ρ
λ = f , λ ∈ Λ,

we define the Poincaré series

PΛ\Γ,ρf :=
∑
γ∈Λ\Γ

f
∣∣
k,ρ
γ.

It converges absolutely a.e. on H if
∫

Λ\H ‖f (τ)‖=(τ)
k
2 dv(τ) <∞.
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Theorem 5 (Integral non-vanishing criterion)

Suppose that −I2 ∈ Λ. Let f be such that the series PΛ\Γ,ρf converges
absolutely a.e. on H. Then,∫

Γ\H
∥∥(PΛ\Γ,ρf

)
(τ)
∥∥ =(τ)

k
2 dv(τ) > 0

if there exists a Borel-measurable set A ⊆ H with the following properties:

(A1) No two points of A are mutually Γ-equivalent.

(A2) Denoting (Λ.A)c := H \ Λ.A, we have∫
Λ\Λ.A ‖f (τ)‖ =(τ)

k
2 dv(τ) >

∫
Λ\(Λ.A)c ‖f (τ)‖ =(τ)

k
2 dv(τ).
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An example application

We proved the non-vanishing of the classical vector-valued Poincaré
series

ΨΓ,ρ,k,ν,u := PΓ∞\Γ,ρ
(
e2πiντ u

)
for k > 8

3 , Γ ∈ {Γ0(N), Γ1(N), Γ(N)} and some suitable choices of:

a unitary representation ρ : Γ→ GLn(C)

ν ∈ Q>0 such that ν ≤ N
4π

(
k − 8

3

)
u ∈ Cn \ {0}

by applying Theorem 5 with

A =]0,M]×
]

1

N
,∞
[
⊆ H,

where M =

{
1, if Γ ∈ {Γ0(N), Γ1(N)}
N, if Γ = Γ(N).
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Thank you!
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