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Examples of Poincaré series on H = Cg,)-g

For k € 4 + 27> and n € Z~g, writing j <(i Z) ,T> =cT+ d:

e the classical holomorphic Eisenstein series Ex € My (SL2(Z)),

Ei(r) = > jnm)k T er,
+ESLa(Z)\SL2(2)

~+ does not vanish at the cusps, so does not vanish identically
e the classical Poincaré series 9, x € Si(SL2(Z)),

wnjk(T) — Z e271'in'y,‘rj(,_y,7_)fk7 =
¥€SL2(Z) o0 \SL2(Z)

~s 7
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Which 9, x are identically zero?

For k € 44 2Z>¢ and n € Zq, ¥nk € Sk(SL2(Z)) is defined by

bo(r)i= D Ty )TN Ten.
YESL2(Z) oo \SL2(Z)

@ dy :=dim¢ Sk(SLz(Z)) =0 for k € {4,6,8, 10, 14}.
® {Y1k...,1%q, k} is a basis of Sx(SL2(Z)).
@ ldeas for n > d:

. . . C
estimating the n™" Fourier n < k* Teglogk

Rankin (1980) coefficient of 1, « for k >> 0

reformulation in terms of
existence of weakly modular
forms with a given principal

part of Fourier expansion

Rhoades (2011) n<L(k-2)

n< gz (k=3)
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Mui¢ (2011) H integral non-vanishing criterion



Poincaré series

Let:
@ G be a locally compact Hausdorff group, second-countable
and unimodular, with Haar measure dg
@ A C T be discrete subgroups of G
@ x : I — C* be a unitary character
@ ¢ : G — C be a measurable function such that:

(F1) p(Ag) =x(Np(g), A€A, geG.
(F2) |l € LA(A\G).

Lemma

The Poincaré series

(Paraxe) (€)= D x(7v) o(ve)
~yEN\T

converges absolutely almost everywhere on G, and
|Parxe| € LHT\G).

Sonja Zunar Non-vanishing of Poincaré series 4/24



Theorem 1 (Mui¢ 2009; 7. 2018)

We have
/ | (Pavrx¢) ()] dg >0
ne

if there exists a Borel-measurable set C C G such that:
(Cl) cCinr CcA.
(C2) We have

1
/ Iw(g)ldg>2/ |o(g)| dg
A\AC A\G

for some measurable function | - | : C — Rxq such that:
(B1) |0] =0.
(B2) |z| =z, zeC.

(B3) | Y02y za| <302 | zn| for every (zp)nez., € C such
that Y07 |z,] < oo.
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Applications (Mui¢; Z.)

A Cuspidal automorphic forms on (the metaplectic cover of)
SL2(R) and cusp forms of (half-)integral weight:

| Classical Poincaré series r n k. € Sk(I, x)

Il 7 being an integrable discrete series of (the metaplectic
cover of ) SLa(R), Poincaré series of K-finite matrix
coefficients of 7 that transform on both sides as
characters of K

I Cusp forms f; € S(T, x) such that

L(57 f) = <fa f;>5k(r7x)a f S Sk(raX)

B Cuspidal vector-valued modular forms:

| Classical and elliptic vector-valued Poincaré series.
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Application A

Non-vanishing criterion for Poincaré
series on the metaplectic cover of

SLy(R)

~

Non-vanishing criterion for Poincaré
series of half-integral weight on H




The metaplectic cover of SL,(R)

Writing H := Cg(z)>0,

SL2(R)N:: {U = (gg = <ig ZJ> ,ng) € SLQ(R) x C* .
N is holomorphic and 7?(z) = ¢,z + d, for all z € ’H}

Multiplication rule:

0102 ‘= (gdlgagundl (gdz'z)ndz(z))v 01,02 S SL2(R)N
Left action on H:
asz + b,
0.z = ———0,
CoZ + dy

For every k € % + Z>0, right action on C*:
(fl0) (2) :=f(0.2) ne(2) 2, zecH.
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The metaplectic cover of SL,(R)

A smooth covering homomorphism of degree 2:

P :SLy(R)™ — SLa(R),  P(0) = g

Using shorthand notation (g, 7,(/)) for 0 = (g5, M) € SL2(R)™, we have
the lwasawa parametrization R x R-o x R — SLy(R)™,

o () (7)) () es).

=:n.eN =a, €A =kt €K

N[

Haar measure on SLy(R)™: for ¢ € C. (SL2(R)™),

4
/ o(g) dg == e / (nxaykt) dv(x + iy) dt,
SL2(R)N U

dx dy

where dv(x + iy) == for x ¢ R and y € Ryg.

K is a maximal compact subgroup; K= {Xk ke) = ek k¢ %Z}
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Spaces Si(I', x) of cusp forms of half-integral weight

From now on, let:

o I be a discrete subgroup of finite covolume in SLy(R)™

@ x : [ — C* be a character of finite order

e ke % + Z>o.
A cusp form f € Si(T, x) is a holomorphic function f : H — C
such that:

° f‘,ﬂ =x(y)f forallyeTl

o f vanishes at all cusps of P(I') :== {g, : v €T}

Petersson inner product on S,(I, x):

1

(s Bl = o | AR aa)

er
where er := [N Z (SL2(R)™)].
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The classical lift C* — CSL2(R)”

.. is defined by

f-H—-C — Ff:SLQ(R)N—)C,
Fr(o) := (f}ka) (i),

restricts to an isometry
k(T 1) = Acusp (T\SL2(R)™) € L* (M\SL2(R)™),

and maps

Paraf = > x(MFl,r = ParnFe= > x(7) Fe(v+).
~EAT ~ENT
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Non-vanishing criterion for Poincaré series on H

Let f : H — C be a measurable function such that:

o flA=x(\f, AeA o fn )f(z)sc(z)% dv(z) < .

Then,
dv(z) < 0.

[ |Paesd) @323
M\H

then P/\\r,xf =0.

(1) /fX}I'ﬂZ(SLg(]R)N) 7 Xk‘FmZ(SLQ(]R)N)'
(2) IfX'FnZ(SL2(R)N) = Xk‘FﬁZ(SLQ(R)N)’ then Pp\r f # O if there exists a

Borel-measurable set S C H such that:

(V) Vzi,€S zn#2z2 = Iz #l.z.

k

@ [ @@t aw=-; | |i@se!

measurable function | - | : C — Rxq satisfying (B1) — (B3).

dv(z) for some

Sonja Zunar Non-vanishing of Poincaré series 13/24



Application ALl

L-functions of cusp forms of
half-integral weight




L-functions of cusp forms of half-integral weight

Let:
o ke i+1Zxo

e [ be a discrete subgroup of finite covolume in SLy(R)™ such
that oo is a cusp of P(I')

@ x : I — C* be a character of finite order such that

x(v) =n7%*, yeT,

@ h e Ryg such that Z (SL2(R)™) Moo = Z (SL2(R)™) (np).

The L-function of a cusp form f(z) = 3.°° a,(f)e?™ in

Sk(T, x) is the function L(-,f): Ch(s)st+1 = C
2
L an(f
L(s,f):==>" n( )
n=1
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Theorem 3 (Analytic continuation of L-functions)

Suppose k € % + Z>o. Let f € Sk(l',x). Then, for %(S) < g the

series
o0
. § : s—1 _2mwin+
\Ur’k7X7s = Proo\r>X ( n € h)

n=1
converges absolutely and uniformly on compact sets in H and
defines an element of Sk(I, x), and the formula

er(4m)<!
o) = erge—) (Vb slsirg

defines a holomorphic continuation of L( -, f) to the half-plane

C?R(s)>§ :
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Theorem 4 (Non-vanishing of L-functions)

Suppose that k € 3 + Z>q. Let % < R(s) < k — 1. Let us denote

N = inf{|c| £0: (i 3) € P(F)} > 0.

Nh
If — is greater than or equal to
s

1
4 e3ISO (kféRgs)Jrl) r (kfﬂ‘tgs)fl) ok-1\ %) §

L (S’ wr7k7X7k_§) > 0'

Put S:=]0,h] x | §,00[ and | - | := || in Theorem 2.
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Corollary

Let n,e,v € Ryg such that 3(z) %
1 1 A
5 <e <. n : :
R
For k € 3 + Z>q we define e R(2)
2 7
k k T L
= - — — C . | |
Ck [2+€,2+1/]><[ n,n] € C ;

There exists kg € % + Z>g such that for every choice of
@ k € ko + Z>o
@ sc C
@ a discrete subgroup I of finite covolume in SLy(R)™ such that oo is
a cusp of P(I")
@ a character x : [ — C* of finite order satisfying x(v) = 77;2" for all
SESHRS
we have L{(s, \Ul‘,k,xk—?) > 0.
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Application B

A non-vanishing criterion for
vector-valued Poincaré series

on H




Basics

SL2(R) acts on H by Mdbius transformations:

ar+ b

&7 = ct+d’

a b
g—<c d>€SL2(R),TEH.

Let:

@ v be the standard SLy(R)-invariant Radon measure on H:

dx d
dv(x+iy) = );2y

o v :SLy(Z) — Cy; =1 be a multiplier system of weight k € R.
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Poincaré series on H

Let:
@ A CT be subgroups of SLy(Z) such that |SL2(Z) : T| < o0

@ p: I — GL,(C) be a unitary representation.

[ acts on the right on (C")%:

(le,7) (1) = v LG r) o) M (r), T e,

For every measurable function  : H — C" such that

fl A=F,  AeA,
0

k,p

k

we define the Poincaré series

P/\\rwf = Z f|k7p’y.
~yEN\T

It converges absolutely a.e. on H if f/\\H | ()]l %(T)ng(T) < 00.
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Theorem 5 (Integral non-vanishing criterion)

Suppose that —h € A. Let f be such that the series Pp\r ,f converges
absolutely a.e. on ‘H. Then,

k

fl‘\H | (Par,of) (7)]| S(7)2 dv(r) >0

if there exists a Borel-measurable set A C H with the following properties:
(A1) No two points of A are mutually -equivalent.
(A2) Denoting (A.A)¢ :=H \ A.A, we have

k

Sana IFEN ST)E dv(r) > [y apye IFT)] ST dv().

Sonja Zunar Non-vanishing of Poincaré series 22/24



An example application

We proved the non-vanishing of the classical vector-valued Poincaré

series
o 2TivT
Vr k= Pror, (€77 u)

for k > 8, T € {[o(N),1(N),[(N)} and some suitable choices of:
@ a unitary representation p : I — GL,(C)
@ v € Qs such that v < %(k—%)
o uecC"\ {0}

by applying Theorem 5 with

A:]O,M] X:|I]\-I,OO|:QH,

1, ifFe{lo(N),I(N)}

where M =
N, if [ =T(N).
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Thank you!
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